0=-20t^2+450t-300

Simple and best practice solution for 0=-20t^2+450t-300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-20t^2+450t-300 equation:



0=-20t^2+450t-300
We move all terms to the left:
0-(-20t^2+450t-300)=0
We add all the numbers together, and all the variables
-(-20t^2+450t-300)=0
We get rid of parentheses
20t^2-450t+300=0
a = 20; b = -450; c = +300;
Δ = b2-4ac
Δ = -4502-4·20·300
Δ = 178500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{178500}=\sqrt{100*1785}=\sqrt{100}*\sqrt{1785}=10\sqrt{1785}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-450)-10\sqrt{1785}}{2*20}=\frac{450-10\sqrt{1785}}{40} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-450)+10\sqrt{1785}}{2*20}=\frac{450+10\sqrt{1785}}{40} $

See similar equations:

| (-5/2)x-(5-30x)/6=(3/2)+(4/6)x-(1/2) | | -3(y+3)=3y-6+3(4y+3) | | 13=5x+17x | | -2(9u-7)+2u=2(u+4) | | 16-2x=3x-4 | | 4^2-x=32^x+2 | | 2+8k-7=2(3+4k)-11 | | .8x−=1.2.2 | | -5(2y-1)+8y=5+2(6y-8) | | 19=2(b+6)−-9 | | (1+x)+x=1.2 | | 1x-3+4=6 | | 497=((2x)^2)/((0.50-x)(0.50-x)) | | 8x+4+5=8x+4+8 | | 3x8=x-1x4 | | 6(p-3)+2=2(4p-8)-2p | | 9(y+3)=27 | | 6(p-3)+2=2(4p-8)-20 | | 4c+40-146=12c+54 | | 19=4(n+2)+3 | | 8x+4=8x+5 | | -2n(n-7=2 | | 214=163-x | | -2x-3/3=7 | | 1x+x=1.2 | | −5/6y−1/5y=4/3−1/5 | | 16x=-19=45 | | (7/4)x-3=2+(9/2)x | | 6(x-5)=3x-18 | | (x/2)-(3/5)=((2/3)x)+(1/6) | | 4x+16+2x-10=180 | | 8+1=3-3(x+3)+4x |

Equations solver categories